Pelagic and coastal sources of P‐wave microseisms: Generation under tropical cyclones
نویسندگان
چکیده
[1] Nonlinear wave‐wave interactions generate double‐ frequency (DF) microseisms, which include both surface waves (mainly Rayleigh‐type) and compressional (P) waves. Although it is unclear whether DF surface waves generated in deep oceans are observed on land, we show that beamforming of land‐based seismic array data allows detection of DF P waves generated by ocean waves from Super Typhoon Ioke in both pelagic and coastal regions. Two distinct spectral bands associated with different P‐wave source locations are observed. The short‐period DF band (0.16– 0.35 Hz) is dominated by P waves generated in the deep ocean by local wind seas under the storm. In contrast, P waves in the long‐period DF band (0.1–0.15 Hz) are weaker and generated closer to the coast of Japan from swell interactions. The accurate identification of DF P‐wave microseism source areas is useful to monitor ocean wave‐wave interactions due to tropical cyclones and to image Earth structure using ambient seismic noise. Citation: Zhang, J., P. Gerstoft, and P. D. Bromirski (2010), Pelagic and coastal sources of P‐wave microseisms: Generation under tropical cyclones, Geophys. Res. Lett., 37, L15301, doi:10.1029/2010GL044288.
منابع مشابه
Ambient seismic wave field
The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1-20 mHz), primary microseisms (0.02-0.1 Hz), and secondary microseisms (0.1-1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at t...
متن کاملSeismic Remote Sensing of Super Typhoon Lupit (2009) with Seismological Array Observation in NE China
The p-wave double-frequency (DF) microseisms generated by super typhoon Lupit (14–26 October 2009) over the western Pacific Ocean were detected by an on-land seismological array deployed in Northeastern China. We applied a frequency-domain beamforming method to investigate their source regions. Comparing with the best-track data and satellite observations, the located source regions of the p-wa...
متن کاملP-Wave Microseism Source Areas: Tracking Tropical Cyclones
8 Nonlinear wave-wave interactions generate double-frequency (DF) microseisms, 9 which include both surface waves (mainly Rayleigh-type) and compressional (P) waves. 10 Although it is unclear whether DF surface waves generated in deep oceans are observed 11 on land, we show that DF P waves generated under Super Typhoon Ioke far offshore are 12 detected by beamforming of land-based seismic array...
متن کاملMicroseisms and hum from ocean surface gravity waves
[1] Ocean waves incident on coasts generate seismic surface waves in three frequency bands via three pathways: direct pressure on the seafloor (primary microseisms, PM), standing waves from interaction of incident and reflected waves (double-frequency microseisms, DF), and swell-transformed infragravity wave interactions (the Earth’s seismic hum). Beamforming of USArray seismic data shows that ...
متن کاملShallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.
Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz...
متن کامل